

Policy options for reducing water for agriculture in Saudi Arabia

David Wogan

Study overview

- Our study illustrates how short-term gains in water reduction can be achieved through crop switching
- We apply a linear programing (LP) model to determine an optimal crop portfolio to minimize water consumption
- We use a collective decision-making model to evaluate the feasibility of the options
- The study is an example of how model-based outputs can be integrated into a KTAB bargaining analysis

https://www.kapsarc.org/wp-content/uploads/2016/04/KS-1630-DP024A-Policy-Options-for-Reducing-Water-for-Agriculture-in-SA.pdf
https://www.kapsarc.org/wp-content/uploads/2016/10/KS-1634-WB033A-Emerging-issues-facing-the-water-energy-food-nexus-in-the-middle-east-and-asia.pdf

Motivation: Saudi Arabia is a severely water scarce country

Total water withdrawals increased by a factor of 14 over three decades

■ 1975: 1.75 km³

2006: 25.4 km³

- Drivers
 - Population growth (7.4 million to 25.4 million)
 - Economic expansion of domestic sectors, most notably agriculture
- Agriculture supports self-sufficiency (food security) and economic development goals
- However, agriculture consumes 87% of all extracted water

Note: as of 2016, wheat and alfalfa are no longer produced in-Kingdom

Policy responses

- Policymakers have acted to improve water sustainability
 - 2016 Phased out wheat production
 - Purchasing farmland in other countries to produce alfalfa
 - Abolished tariff on imported agricultural goods
 - Cereal
 - Animal feed
 - Wheat flour
- Policy target: 30% water reduction by 2030
- Aspiration: 50% water reduction by 2030

Crop circles north of Riyadh, KSA

Date palms south of Riyadh, KSA

Methodology

Hypothesis: Saudi Arabia can reduce water use in the short-term through crop switching (without introducing new farming techniques or technology)

- 1. Optimization analysis what is *technically* feasible?
- 2. Collective choice analysis what is *socially* feasible?

1. Optimization analysis

- We created a stylized model of the Saudi agriculture sector based on the availability of the following datasets for 37 crops and livestock products (alfalfa, melons, goat meat, etc)
 - Revenue (USD/ton)
 - Production (tons)
 - Water consumption (m³/ton)
- The model adjusts the production level of 37 crops and settles on a portfolio that consumes the smallest volume of water given the following constraints:
 - Aggregate farmer revenue must be greater than or equal to the amount in the base case (proxy for farmer welfare – cannot decrease because of reform)
 - Aggregate tonnage of crops and livestock must be greater than or equal to the base case (proxy for food security / self-sufficiency – cannot be compromised because of reform)
- Livestock consume alfalfa and other fodder, therefore a ratio of fodder to livestock was included

Scenarios

- Limits were set on how much crop-specific production could increase or decrease (percentage)
 - This provides flexibility to design scenarios
 - Can be used to preserve culturally significant crops (dates) or test extreme scenarios where crops are removed completely (e.g., dairy products)
 - 28 scenarios were considered, of which we present five illustrative ones

Description	Other crops can decrease or increase by
Keep wheat	25% (decrease) or 100% (increase)
Keep dates	25% or 100%
Remove fodder and dairy	75% or 200%
Remove fodder	25% or 100%
Remove fodder and dairy	95% or 300%

Note: Wheat is eliminated for all other scenarios per policy

Results – water savings

Crop switching can reduce agricultural water consumption by up to 70%

Results – crop portfolio

Results – energy consumption

Interpreting the results

- First, we find that significant water savings can be gained by relatively small changes in crop production
 - When retaining dates (or wheat) and allowing other crops to decrease by 25% or double in production
- Second, reaching the 30% target requires a more ambitious approach by allowing a drastic change in production
 - When retain fodder and dairy, but allowing a large swing in production levels
 - Or by removing a water-intensive crop like fodder
- Finally, the 50% target is only possible with both substantial changes in crop production and the elimination of water-intensive crops like fodder and dairy
- Our hypothesis was that a scenario with minimal impact (and thus water savings) would be most favorable

Key results

- Our study illustrates how short-term gains in water reduction can be achieved through crop switching
- Water for agriculture can be reduced by 47% without compromising food security or aggregate farmer revenues
- Eliminating the most water-intensive, low-value added crop is less disruptive than moderate reductions across many crops
- Water for agriculture could be reduced by 70%, but at the expense of losing the dairy, fodder, and grains sectors

https://www.kapsarc.org/wp-content/uploads/2016/04/KS-1630-DP024A-Policy-Options-for-Reducing-Water-for-Agriculture-in-SA.pdf
https://www.kapsarc.org/wp-content/uploads/2016/10/KS-1634-WB033A-Emerging-issues-facing-the-water-energy-food-nexus-in-the-middle-east-and-asia.pdf

Thank you

David Wogan david.wogan@kapsarc.org

Lessons learned

- The team considered a more sophisticated model that would make production decisions based on economics of agriculture
- A model of this structure would involve obtaining data on
 - Cost of production
 - Transportation costs from farm to final demand center
 - Cost of water extraction and delivery
 - Energy inputs for farming and livestock
 - Emissions and other environmental attributes
 - Price controls or subsidies for inputs and final goods
- The model would then meet demand by (a) minimizing cost or (b) maximizing profit through an optimal crop portfolio
- Water consumption would be an output of the model and inspected to assess the effectiveness of potential policies
- However, a relatively lightweight and straightforward model like the one presented can yield insight

