Circular Carbon Economy

Ahmad O. Khowaiter
Chief Technology Officer, Saudi Aramco
An economic system aimed at eliminating waste and the continual use of resources. It is an alternative economy that takes into consideration the reuse, recovery and recycling of products and materials.
Circular Carbon Economy Framework

Reduce
- Efficiency
- Fuel Switching
- Renewables
- Nuclear
- Blue Hydrogen
- Ammonia
- Carbon Capture

CO₂

Carbon Capture

HC Production

Hydrogen

Combustion

Chemicals
Circular Carbon Economy Framework

Reduce
- Efficiency
- Fuel Switching
- Renewables
- Nuclear
- Blue Hydrogen
- Ammonia
- Carbon Capture

Carbon Capture

Reuse
- Food
- CO2 Enhanced Oil Recovery
- Heat & Power (sCO2)

Combustion

HC Production

EOR

Hydrogen

Chemicals
Circular Carbon Economy Framework

Reduce
- Efficiency
- Fuel Switching
- Renewables
- Nuclear
- Blue Hydrogen
- Ammonia
- Carbon Capture

Re-use
- Food
- CO2 Enhanced Oil Recovery
- Heat & Power (sCO2)

Re-cycle
- CO2 Reforming
- Power to X
- Electrolysis/Electrochemistry
- Green Hydrogen
- Methanol/Urea/Ammonia
- E-Fuels/Syn-Fuels
- Syn-Chemicals
- Concrete

Diagram:
- CO2
- Combustion
- Carbon Capture
- Hydrogen
- Chemicals
- Synthetic HC
- Plastic Waste
- HC Production
- EOR
- Food
- CO2 Enhanced Oil Recovery
- Heat & Power (sCO2)
- CO2 Reforming
- Power to X
- Electrolysis/Electrochemistry
- Green Hydrogen
- Methanol/Urea/Ammonia
- E-Fuels/Syn-Fuels
- Syn-Chemicals
- Concrete
Circular Carbon Economy Framework

Reduce
- Efficiency
- Fuel Switching
- Renewables
- Nuclear
- Blue Hydrogen
- Carbon Capture

CO₂

Combustion

Carbon Capture

Remove
- Nature Based Solutions
- Direct Air Capture
- CO₂ Sequestration
- Mineralization

H₂O

Re-use
- Food
- CO₂ Enhanced Oil Recovery
- Heat & Power (sCO₂)

Re-cycle
- CO₂ Reforming
- Power to X
- Electrolysis/Electrochemistry
- Green Hydrogen
- Methanol/Urea/Ammonia
- E-Fuels/Syn-Fuels
- Syn-Chemicals
- Concrete

Hydrogen

Chemicals

Synthetic HC

EOR

Sequestration

HC Production

Nature Based Solutions

Direct Air Capture

CO₂ Sequestration

Mineralization

Plastic Waste

Green Hydrogen

Methanol/Urea/Ammonia

E-Fuels/Syn-Fuels

Syn-Chemicals

Concrete

Coal

Natural Gas

Oil

Concrete
4Rs definitions for circular carbon economy

Reduce
All options that reduce the amount of CO₂ entering the atmosphere

- Energy Efficiency
- Fuel switching
- Renewables
- Nuclear power
- CO₂ capture from (mobile and stationary sources)

Recycle
Chemically Transforming CO₂ into new products (with renewable energy)

- Synthetic fuels
- Biofuels
- Fertilizers and urea
- Methanol and chemicals
- Polymers
- Concrete (CO₂ chemically reacted)

Reuse
Using CO₂ without changing its molecular form (CO₂ is not chemically reacted)

- CO₂-Enhanced oil recovery
- Super-critical CO₂ applications (power)
- CO₂-Enhanced water recovery

Remove
Removal of CO₂ from the atmosphere

- Natural sinks (e.g., afforestation, soil and oceans)
- Bio-energy with CCS (BECCS)
- Direct Air Capture with Storage (DACS)
- Sequestration
Why do we need a circular carbon economy?

- Complex energy system with constraining interdependencies
- Scale of existing system - substitution will take technology, capital, and time
- Challenging sectors - Heat, Industry, Aviation, ...

CCE offers a holistic framework for efficient policymaking with Life Cycle Analysis as the basis

- Allows maximum utilization of existing investments and infrastructure
- Addresses the emissions challenge in hard to decarbonize sectors directly and economically
Thank you