

EOR - CO₂ Feasibility issues Economics and business cases

Gilles Munier
Chief Executive Officer
IEF/GCCSI Symposium on CCS
31 May – 01 June 2010, Hotel El Aurassi, Algiers, Algeria

Global Activity

EOR projects worldwide

	I.		1									
Drassa	CO ₂		STEAM	POL	IC	SAP	N ₂		HW	GAS HC		BAC
<u>Process</u>	М	ı					М	I		М	I	
Planning	12	4	7	6	1	2						
USA	101	5	45		12	2	1	3	3	1	12	
CANADA	7		14	1	3			1		1	22	
Others	1	10	82	21	1			1			3	1
Total	121	19	148	28	17	4	1	5	3	2	37	1

EOR report, OGJ, 2008

140 projects for CO2

CO ₂	140
N ₂	6
Others	240
Total	386

POL: Polymer injection

SAP: Surfactant-Alkaline-Polymer injection (eg Daging)

HW: Hot Water

IC: In-Situ Combustion

BAC: Microbial

- In USA, about 250,000 bopd through CO₂-EOR
- ~ 85 billion barrels technically recoverable, from which 50 billion economically recoverable (\$70 per barrel \$50 per ton CO₂) of recoverable oil (1 billion proven) primarily in the Permian Basin, East Texas and the Gulf Coast
- Weyburn: 5000 tonnes/day CO₂ coming from a coal-gasification plant in Dakota 320 km pipeline.
 Recovery of 130 million additional barrels of oil from a partially depleted reservoir using a CO₂ miscible flood

CO₂-EOR processes

- Miscible WAG
 - 5-15% OOIP incremental recovery
- Gravity stable gas injection (immiscible)
 - Up to 20% OIIP incremental recovery
- Factors are also extremely favourable, ranging from about 3 mcf/stb for WAG applications to 6 mcf/stb for straight CO₂ floods (3 to 4 bbl / tonne of CO₂).

	Layer n - Pore Volume occupation				
	trapped water	mobile water	mobile oil	trapped oil	
CO2	swells	replaces (WAG ?)	displaces	swells	

Major beneficial effects:

- Oil viscosity reduction
- Lower miscibility pressure requirements for CO₂
- Oil swelling

Technical challenges:

- Viscous fingering
- Gravity segregation
- Conformance (placing CO₂ in the "right" zones")
- Corrosion
- Complex geology (fractured reservoirs)
- What to do with not injected CO₂?

Operational considerations

EOR CO₂ conceptual profiles

Economic and operational considerations

- Driving parameters
 - Cost of CO₂ versus oil price visibility
 - Contract structure
 - Threshold effect of Opex
 - Decreasing volumes with time (genuine versus recycled CO₂) compared to capture lifetime
 - Optimization of transport design
 - Old wells WO needs
 - WOC increase jeopardizes EOR
 - Buffer storage required

From DOE - 2009

Costs breakdown for a CO ₂ -
EOR/storage operation in the North-
Sea (after SINTEF)

→ CO₂ captured from an onshore coal fired power plant and transported by pipeline to the North Sea

→ Cost of oil production: \$43.2/STB

Assumed Oil Price (\$/B)	\$70
Less:	
Gravity/Basis Differentials, Royalties and Production Taxes	(\$15)
Net Wellhead Revenues (\$/B)	\$55
Less:	
Capital Costs	(\$5 to \$10)
CO2 Costs (@ \$2/Mcf for purchase; \$0.70/Mcf for recycle)	(\$15)
Well/Lease O&M	(\$10 to \$15)
Economic Margin, Pre-Tax (\$/B)	\$15 to \$25

Economic considerations

EOR project VS EOR+CCS project Net Cash Flow

Economic considerations

EOR CO₂ needs profile+ CCS

Storage in hydrocarbon fields: pros and cons

Gas fields

Pros of injection in depleted gas field	Cons of injection in depleted gas field
Known physical trap and seal to hydrocarbon gas (at least originally)	Significant pressure drop may have compromised trap
Well characterised (knowledge of reservoir architecture and dynamic performance)	Abandoned wells may compromise trap
Known capacity (volume previously occupied by produced gas)	CO ₂ expansion required at base of well (CO ₂ delivered in dense phase but initially stored in gas phase)
Known injectivity (inferred from productivity)	Aquifer influx may limit capacity/injection rate
Existing infrastructure	Facilities and well upgrades required

Oil fields

Pros of injection in depleted oil field	Cons of injection in depleted oil field				
Incremental oil recovery	Large volumes of water and CO ₂ produced				
Known seal/enclosure/trap to oil (gas?)	Significant additional CO ₂ generated to power recycling				
Existing injection facilities	Facilities and well upgrades required				
Well characterised (knowledge of reservoir architecture and dynamic performance)	Limited window of opportunity prior to cessation of production				
Modest pressure change during lifetime	Abandoned wells may compromise trap				

