

Fifth IEF-IGU Ministerial Gas Forum: Gas for Growth

Background Paper

New Delhi, December 6th 2016

Introduction

Current context

- Low gas prices across all markets are a result of low oil prices and the existent oversupply situation in key markets (LNG, US, Europe etc.)
- Natural gas demand could increase due to (1) it becoming more competitive in the current context of low prices, and (2) its lower emissions vs. other fossil fuels
- Nations are committed to arrest global warming; local air quality initiatives are also in play. Gas can support sustainability but global policy is necessary

Forum objectives

- To discuss the future prospects of natural gas demand
- To review the impact of gas & LNG trade with regards to market integration and regional gas markets
- To explore the impact of policy on the growth of the natural gas sector

Key Question: What is the role for gas in an oversupplied market and in a world facing multiple challenges with regards to sustainability?

Agenda

Gas/LNG demand growth

LNG supply as an integrating force

Sustainability needs a mind-shift

Putting it all together – key observations & questions

Natural gas: the greatest growth fossil fuel

Demand expected to be driven by non-OECD Asia

Predicted demand growth for natural gas leads other primary energy sources¹

Growth expected to be driven by non-OECD Asia

^{1.}New Policies Scenario Source: IEA, BCG LNG Market Model

Sopyright © 2016 by The Boston Consulting Group, Inc. All rights reserved

Separation between the major future demand sinks and producing regions will necessitate the increased flow of LNG

World wide regional Natural gas balance 2014-2035 (Mtoe)

LNG flow expected to increase from 325Mtpa in 2015 to ~700Mtpa in 2035; gas demand becomes an LNG story

LNG demand is expected to grow at 5-6% p.a. between 2015 and 2025 under the base scenario

2015 Global LNG demand projections between 2015 and 2025

China, India and Asean countries are the drivers of LNG future demand growth

Global LNG demand base scenario

More countries can join supporting a higher demand growth rate

Agenda

Gas/LNG demand growth

LNG supply as an integrating force

Sustainability needs a mind-shift

Putting it all together – key observations & questions

LNG supply is set to increase with 13 projects becoming operational in the next 3-5 years

13 projects with FID to come on line during the next 3-5 years

Country	Project	Announced start up	Operator	Capacity (bcma)
Australia	AP LNG T1/T2	2015	Conoco	12.6
US	S. Pass T1-T5	2015-2018	Cheniere	31.5
Australia	Gorgon LNG	2016	Chevron	21.8
Malaysia	MLNG Train 9	2016	MLNG	5.0
Australia	Wheatstone	2016	Chevron	12.6
Malaysia	Kanowit	2016/183	Petronas	3.8
Australia	Ichthys	2017	Total / Inpex	11.8
Australia	Prelude FLNG	2017	Shell	5.0
Russia	Yamal	2019	Novatek	23.1
US	Freeport T1 -T3	2018	Freeport LNG	18.5
US	Cameron T1-T3	2018	Sempra	18.9
US	Cove Point	2018	Dominion	7.3
US	Corpus Christi LNG T1 T2	2018	Cheniere	12.6

Recent FID activity has been heavily concentrated in the US

Year of FID

Copyright © 2016 by The Boston Consulting Group, Inc. All rights reserved

Substantial additional capacity without FID

LNG project pipeline

Strong risk of delays on new project developments, given the mismatch between development costs and LNG prices

Supply cost curve (FOB)

Note: 2\$/mmbtu have been deducted from DES prices in order to make them comparable with FOB prices Source: **BCG LNG Market Model**

Substantial oversupply risk in the coming years

Driven by the ca.185 bcma of additional capacity expected to come on line in the next 3-5 years

Source: BCG Market Model

In a context of increased liquidity in the LNG market

LNG spot prices could continue registering low levels for the coming years

Argus LNG spot prices June 2014 – November 2016

Note: NEA= North East Asia 2. NWE = North West Europe

Source: Argus LNG

Western Europe hubs will act as a regulation valve for LNG

Western European markets have become liquid and hubs are the key price reference

European hubs are becoming liquid during the last decade

Evolution of traded volumes at the main Continental European hubs (bcm)

European hubs have become the key reference for gas prices in Europe

Wholesale Gas Price Formation in Northwest Europe (%)

^{1.} Information for 2014 traded volumes at TTF not reported by Prospex: 2014 TTF traded volumes estimated based on delivered volumes at TTF Source: Prospex, Gasunie Transport Services, IGU

Copyright © 2016 by The Boston Consulting Group, Inc. All rights reserved.

Agenda

Gas/LNG demand growth

LNG supply as an integrating force

Sustainability needs a mind-shift

Putting it all together – key observations & questions

Copyright © 2016 by The Boston Consulting Group, Inc. All rights reserved

COP21 was a step forward towards sustainability and climate change mitigation

Signed agreement sets ambitious goals...

Hybrid agreement framed

Legally binding

Transparency and accountability: Submitting an emissions reduction target (INDCs¹) and regularly review that goal

Burden sharing: Legal obligation on developed countries to continue to provide climate finance to developing countries

 Details about the mechanism moved out of the legally binding agreement

Not legally binding

Emissions reduction: no formal enforcement mechanism at global level

Financing mechanism: further negotiations required

 Countries should agree a "new collective quantified goal" from the floor of \$100bn per year

... benefitting all key parties involved

Governments

- The Paris Agreement was adopted; it has legal force
- Other bilateral financial agreements were also made during the conference, including pledges to the Green Climate Fund

Investors & companies

- Climate commitment by over 2,000 companies and 400 investors
- Long-term and more stable framework for investors; clear signal sent that the transition to a low-carbon economy is underway, and that governments intend on supporting the process

NGOs & civil society

- Mention of a 1.5°C goal has been unexpected
- There were also mentions of food security, humanitarian concerns and "ratcheting up"

Intended National Determined Contributions Source: BCG analysis, KM (Climate and Energy Trends)

Copyright © 2016 by The Boston Consulting Group, Inc. All rights reserved

Current pledges are far off reaching 2°Celsius Scenario (2DS)

2DS requires GHG concentrations below 500ppm (450 is widely used as target)

Ranges of GHG CO₂eq Cumulative anthropogenic CO₂ emissions from 1870 (GtCO₂) concentrations in 2100

^{1.} Analysis based on 300 baseline and 900 mitigation scenarios in the literature 2.Climate action tracker provides 2.7 °C as median value while Climate Interactive 3.5°C as of April 2016 Note: Unlike other short-lived species of GHG for which stable concentrations are associated with stable emissions, stable concentrations of CO₂ in the long-term require net emissions to decline to zero. Hence, a key metric to consider in evaluating potential future global warming is cumulative CO₂ emissions. Source: BCG analysis; IPCC AR5 2014; Climate action tracker; Climate interactive

Action needs to be fast, global and radical

Fast Asset base will last long

We need results by 2030, but assets lifetime and deployment are long, driving inertia

CO₂ Emission (GtCO₂) 100 Curve needs to Natural death of 2015 coal plant Current trajectory 1990 2000 2010 2020 2030 2040 2050 2060

Global Difficult non-OECD action

Change in emerging economies is necessary, and at odds with current economic development model

Radical Regulatory action needed

Energy transition must accelerate, cannot rely on natural technology cycle only – regulation has to be part of it

World TPED (mtoe)

Note: asset lifetimes are subject to substantial longevity differences depending on region, specs, and economics. Lifetimes can be prolonged or shortened depending on commodity economics Source: Velocity suite, British Hydro, Shell, Rystad, Lazard, BCG nuclear database, Morgan Stanley, Wind Energy Update, US government, press search, IEA WEO, BCG

Natural gas is the ideal bridge fossil fuel to support sustainability initiatives

Economic attractiveness and less than half the CO2 of Coal

In addition, natural gas is clean burning and will improve local air quality

^{1.}New Policies Scenario Source: IEA, IGU Urban Air Quality Report, BCG LNG Market Model

A tale of two cities: natural gas' positive impact on air quality

Dublin's successful efforts to eliminate severe winter smog

Concrete action taken

- "Smoky Coal Ban" in 1990
 - Prohibited sale, marketing & distribution of bituminous coal
 - Drove NG in home heating, commercial and transportation use
- NG now >75% of energy share in residential with ~67% of households in Dublin using NG

Tangible results

- Reduction in CO, SOx, Benzene
- Smog eliminated
- PM concentrations fell between 80-90% from 1990 to 2014

Berlin's strides in improving air quality since reunification

Concrete action taken

- NG primary energy share increased from 17% (1990) to 41% (2010); coal fell 37% to 17%
- NG share in power increased to 37% and in district heating increased to 45% (2012)
- Lignite burning within coal mix reduced by ¾
- Coal furnaces for heating in commercial and residential sector dropped (400,000 to 40,000)

Tangible results

- From 1989 to 2015
 - SOx dropped by 95%
 - NOx decreased by 76%
 - PM₁₀ reduced by 83%

vyright © 2016 by The Boston Consulting Group, Inc. All rights reserve

Despite these advantages, left to its own devices non-OECD Asia will gravitate to coal

The average power generation cost of coal/gas fired power plants (including capex & opex) (US cents/kWh)

Cour	ntry	Gas	Coal	Trend
China	*3	13.9	5.9	Cost advantage for coal, new build focused on inland areas • Closure of old coal city plants, growth in transmission ('coal by wire')
India	•	7.3	5.9	 Coal to remain dominant Focus on coal fired generation given concern on gas supply security
Indonesia		7.2	8.9	Both coal and gas to gain share in power mix, coal to remain dominant Govt. promoting coal to reduce use of oil fuels, and gas shortage concerns
Thailand		7.5	6.2	 Share of coal in power mix to increase Govt. promoting coal – concern on gas supply security and higher gas prices
Malaysia	(*	4.4	6.9	 Gas price reforms and coal supply security to decide share in power Gas plant cost advantage dependent on gas price reforms by Govt.
Vietnam	*	6.1	6.8	 Gas & coal import prices to decide share in power, coal likely to dominate Currently 13 GW of coal plants being built, and only one gas plant (750 MW)
Philippines		8.4	8.4	 Share of coal in power mix to increase Coal based plants likely to have cost advantage as gas prices expected to rise

Agenda

Gas/LNG demand growth

LNG supply as an integrating force

Sustainability needs a mind-shift

Putting it all together – key observations & questions

Key observations

Natural gas is expected to experience the greatest growth among fossil fuels

- Growth is expected to be centered in Non-OECD Asia as well as niche markets (ME & South America)
- LNG to continue to gain dominance given future demand sinks located far from production sources

LNG expected to become more of an integrator of disparate markets

- LNG as a commodity is becoming more liquid
- Cross market flows are increasing (especially out-flows from HH)
- European market now liquid enough to act as a balancing mechanism for global LNG
- Increasing supply will further depress prices and increase liquidity

Sustainability issues becoming more prominent

- Both global climate change as well as local air quality issues are gaining importance
- Although the world is starting to recognize these issues, the current pace of change is not adequate

Natural gas is the ideal bridge fuel

- Due to its reduced emissions (CO2 and others) vs. other fossil fuels, together with its competitiveness
- However, despite this and the current favorable market environment, non-OECD Asia will gravitate to coal

Key questions

- Will lower prices stimulate demand as envisioned a decade ago?
- Will non OECD Asia deliver as per expectations?
- What consequences will the expected LNG oversupply have in the different regional markets?
- What will be the appropriate method for pricing gas?
- Will increased LNG market liquidity eventually result in prices linked across all regions (US-Asia-Europe)?
- With the backdrop of global sustainability, how can governments/ industry come together to catalyze the transfer of resources and technology to the non-OECD world in short order?
- What role does natural gas have to play in this sustainability journey?
- How can industry & governments move towards making natural gas a more favorable fuel of choice for non-OECD Asia?

