FIFTH IEF-KAPSARC THOUGHT LEADERS' ROUNDTABLE PLENARY SESSION 2

INTEGRATING LOW-CARBON ENERGY TECHNOLOGIES IN THE UPSTREAM AND MIDSTREAM

KAMEL BEN-NACEUR

INDIRECT EMISSIONS INTENSITY (OIL PRODUCTION)

- Average indirect emissions intensity for oil is 95 kg CO2 eq./boe, but wide variation
- Most of the emissions related to methane and refining
- 2/3 of the emissions from less than $\frac{1}{2}$ of the production

Source: IEA-WEO 2018, KAPSARC, Nomadia

INDIRECT EMISSIONS INTENSITY (GAS PRODUCTION)

- Average indirect emissions intensity for gas is 100 kg CO2 eq/boe, but wide variation
- Most of the emissions related to methane (upstream and downstream)
- Energy for extraction is relatively uniform

Source: IEA-WEO 2018, Nomadia

BETWEEN 2017 & 2040: GHG DECLINE FOR OIL COMPENSATED BY INCREASE WITH GAS

More energy/emissions intensive sources: heavy oil, shales, deepwater, higher water cut, sour/acid gas ...

Source: IEA-WEO 2018, Nomadia

COMMON TECHNOLOGIES FOR OIL & GAS

- Methane emissions:
 - Low hanging fruits: technology could avoid 75% of those emissions (IEA)
 - Marginal abatement cost varies from \$5/Mbtu to +\$7/Mbtu
 - Leak detection and repair (LDAR) technologies
 - Replacement of existing devices: Pumps, electric motors, compressor components
 - New device installation: vapor recovery ...

OIL RELATED TECHNOLOGIES

- Electrification
 - Improved efficiency
 - Emissions intensity varies regionally
 - Offshore/deepwater installations
- Digitalization
 - Improving recovery
 - Reducing energy use
- Enhanced Oil Recovery
 - Steam generation using solar power: Oman, Kuwait, California
 - CO2-EOR

5

Shifting to EOR+ (Storing CO2 through EOR)

HYDROGEN

- Significant potential for a clean energy transition
- IEA Report on H₂ for Japan's G20 presidency
- Challenges:
 - Emissions
 - Cost

6

- Transport/Storage/Distribution
- Middle East Projects:
 - UAE: Green Hydrogen Project (DEWA/Siemens): Integrated MW-scale plant to generate H_2 from solar energy
 - Saudi: World-scale H₂ production at Yanbu

CO₂ CAPTURE, UTILIZATION AND STORAGE

- 17 major CCUs projects today capturing 30 million tons of CO₂ per year, with 70% from oil and gas operations
- IEA's ETP projects a potential of 6.8 billion tons by 2060 for the 2DS with 40% from the industry and fuel production / transformation
- At that scale, a major investment is requirement for a transport and storage network
- Amount of CO₂ indirect emissions from oil and gas-related operations depend on CO₂ price:

\$ / t CO ₂	Annual Oil & Gas-related CCUS potential (Mt CO ₂)
50	250
100	450
150	690
– – e))	KAPSARC

كرزالملك عبدالله للدراسات والبحوث البترولي

7

IN THE REGION: ADNOC ANNOUNCES 1.8 B\$ IN EMISSIONS ABATEMENT PROJECTS TO 2023

- ADNOC is already one of the lowest GHG emitter per boe (less than half the industry average)
- Plan announced in February 2019 includes 1.8 B\$ in further emissions abatement through:
 - Expanding CCUS from 0.8 Mt CO2 (al Reyyada) to 2.5 Mt by 2025
 - Increasing energy efficiency by 10%

8

- Reducing gas consumption by 150 mmscf/d
- Expanding use of AI / Big Data to enhance environment practices
- Producing zero sulfur content bunker fuels
- Installing low NOx burners in gas turbines, and installing solar panels at wellhead control panels
- Avoiding the withdrawal of water from deep aquifers by using produced water for reinjection into oil reservoirs
- Replacing inefficient diesel generators in drilling rigs to meet stringent air emission limits and reduce GHG emissions
- Planting 250,000 mangrove seedlings in Al Dhabbia

FIFTH IEF-KAPSARC THOUGHT LEADERS' ROUNDTABLE PLENARY SESSION 2

INTEGRATING LOW-CARBON ENERGY TECHNOLOGIES IN THE UPSTREAM AND MIDSTREAM

KAMEL BEN-NACEUR

