

Energy Roundtable

Bangkok | Thailand

Plenary Session 3:

Disruptive technologies in energy sector: Impacts, challenges and preparation

Background Paper

Disclaimer

The observations presented herein are meant as background for the dialogue at the 7th Asian Ministerial Energy Roundtable. They have been prepared in collaboration with The Boston Consulting Group and should not be interpreted as the opinion of the International Energy Forum or The Boston Consulting Group on any given subject.

Market context

- While energy technology is evolving, reliable energy sector transformation needs clear and predictable policy signals.
- The challenge is to maintain momentum in the cost effective uptake of new energy technologies without stranding investment in existing technologies.
- International collaboration needs to be enhanced to achieve globally shared objectives through new innovative technologies and adequate levels of investment to maintain energy security.

Session objectives

- Discuss how long-term policy and cooperation can better accommodate new technologies and improve efficient and sustainable resource management along energy transition pathways.
- How can Ministers set up polies that embrace energy innovation and disruption in support of multiple national energy policy objectives without eroding market stability?
- What forces drive technology changes in the Energy sector? How are ambitions for greater sustainability of new technologies translated into effective actions that strengthen energy security?

Key Question:

How can Ministers facilitate new technology deployment and investment to support national objectives, shared goals, and global energy security?

What is the role of technology in the energy sector?

What are the main levers promoting technological change?

Key questions and discussion

Technology is playing an increasingly important role in the energy sector

Strong commitment to innovation in the energy sector

Example: Mission Innovation

Mission Innovation to reinvigorate and accelerate public and private global clean energy innovation with the objective to make clean energy widely affordable (COP21 Conference, December 2015)

- Double Governmental Investment in Clean Energy Innovation: Each participating country will seek to double its governmental and/or state-directed clean energy research and development investment over five years
- Private Sector and Business Leadership: Investment in the earlier-stage clean energy companies that emerge from government research and development programs
- Implementation: Participating countries will implement Mission Innovation in a transparent, effective, and efficient manner •
- Information Sharing: Each participating country commits to provide, on an annual basis, transparent, easily-accessible information

Source: MIssion Innovation

5

The business community is fully aware of the need for action

- "America needs a **consensus climate solution** that bridges partisan divides, strengthens our economy and protects our shared environment [including a] **gradually rising** (...) **carbon tax**"
- "With solar panels on the roof, a micro CHP plant in the cellar, an electric car in the drive and an intelligent consumption control system, everyone can create their own Energiewende"
 - "By definition **we must move towards renewable energy**—how can people argue against that? To argue that is to say that eventually we will **run out of energy and die or civilization will collapse**"
 - **"Renewables** are no longer referred to as alternative energy, they **are** traditional"
- 5
- **"50 percent of our energy** consumption spanning **heat, transport and electricity** – to be met by **renewables** by 2030"

eon

Johannes Teyssen, CEO, E.ON

T

Elon Musk, CEO, Tesla

Nicola Sturgeon, The First Minister, Scotland

Investors acknowledge the risks associated with climate change

Investors are divesting from fossil-based assets and 'greening' their portfolios

- More than 400 institutions across 43 countries representing \$2.6 trillion in assets have already committed • to divest from fossil fuels
- Recent examples
 - Norway's largest pension fund decided to divest from all companies that earn >50% of their revenues from coal-based activities. Divestment: \$9-10bn
 - Allianz will divest from any company that generates >30% of revenue by mining coal or bases >30% of its energy production on coal. Divestment: \$4bn

Investors claiming for consistent data to assess financial risks associated with climate change

- BlackRock warns companies that "climate change has become an investment risk"
- Latest example: Exxon forced to report on Climate Change •
 - A number of large institutional fund firms including BlackRock, the world's largest asset manager, and Vanguard, supported a shareholder resolution calling on ExxonMobil to share more information about how new technologies and climate change regulations could impact the business of the world's largest publicly traded oil company

BLACKROCK

Vanguard

Technological change in energy is already a fact (I)

EU-27

Change in power generation mix 2000-16

US

New installed power capacity 2012-16

Source: EIA (DOE; US); EWEA; BCG analysis

AMER7-Session-3-Disruptive-Technologies-Energy-2017-IEF.pptx

Technological change in energy is already a fact (II)

Apple and Google will be 100% Renewables in 2017

Renewables procurement in 2016

9

An important environmental challenge ahead

Energy sector CO₂ emissions - Moderate scenario-

What is the role of technology in the energy sector?

What are the main levers promoting technological change?

Key questions and discussion

Three levers are promoting technological change in the energy sector

Renewables and Energy Efficiency are the most relevant technologies

Renewables and Energy Efficiency accounted ~33% of global energy investments in 2016

Source: IEA Energy Investment Outlook AMER7-Session-3-Disruptive-Technologies-Energy-2017-IEF.pptx

Investments in Clean Energy equal ~ B 300 \$ yearly

1. Includes smart grid, electric vehicles and power storage Source: BNEF. BCG Analysis

Onshore Wind and Solar PV are leading the race

Energy storage can be a game changer

Asia is leading Clean Energy investments worldwide

Renewable Investment by region and technology in 2016 (%)

(1) Data for Biomass & Waste estimated from preliminary 2016 data Note: Investment includes Asset Finance, Corporate R&D, Government R&D, Public Markets, Reinvested Equity, Venture Capital / Private Equity Source: BNEF. BCG Analysis

China is leading the investment in renewables in 2016

(1) Data for Biomass & Waste estimated from preliminary 2016 data Note: Investment includes Asset Finance, Corporate R&D, Government R&D, Public Markets, Reinvested Equity, Venture Capital / Private Equity Source: BNEF. BCG Analysis

China is leading renewables investments in Asia-Pacific

Note: Investment includes Asset Finance, Corporate R&D, Government R&D, Public Markets, Reinvested Equity, Venture Capital / Private Equity Source: BNEF. BCG Analysis

Asia-Pacific will concentrate ~40% of global renewables investments until 2020

Source: IRENA Capacity Statistics 2016 and IEA Renewable Medium Term Report

Copyright © 2017 by The Boston Consulting Group, Inc. All rights reserved

Storage will play a critical role in renewables full development

Storage market growth will be focused in Asia and Europe

Significant market uptake in the next 5 years

1. Battery technologies considered are Lithium-Ion, Lead-acid, Sodium Nickel Chloride, Sodium Sulphur, Flow, Flywheels, Compressed Air (Alternative). Source: IHS, 2015; BCG analysis

Energy Efficiency is fostering technological development and new business models

Copyright © 2017 by The Boston Consulting Group, Inc. All rights reserved

Building sector represents 54% of global Energy Efficiency investment in 2015

Global Energy Efficiency Investment by sector (2015)

Asia Pacific accounting ~30% of total Energy Efficiency investment in Buildings

"Integrated decentralized solutions" are the next step

Decentralized technologies consist of generation, storage, and load ...

... and are applied across key customer segments

Segment		Example		
Small utility	नीन स्त्रीत	 IPPs , yieldcos, and / small utilities 		
Off-grid		 Mines in remote regions e.g. in Africa 		
Community		 Small cities, universities, military 		
Industrial	- Meyer	 Heavy industries e.g. a large steel plant 		
Commercial		• Retail stores e.g. IKEA		
Residential		 One- or two-family homes 		

Broad number of Smart Home solutions and technologies

Currently there are few incentives to capture and store CO₂

A costly technology hard to justify

"CCS suffers from a reputation of being a costly technology, due to its mismatch between shortterm certain costs and long-term uncertain benefits"

Two reasons may explain government's hesitation to providing enough funding

- Large CAPEX needed for funding, often costs above 1bn \$
- CCS suffers from having CO₂ avoidance as sole purpose, compared to other renewables which creates energy efficiency measures

...and some more reasons for project developers:

- CO₂ prices / carbon taxes are not high enough to allow large development of CCS, and subsidies are not sufficient
- Lack of clear signals for climate change mitigation policy, unclear framework for storage and risk of substitution by natural gas or renewables

No incentive to pay for CCS

"In the European quota system a ton of CO_2 costs ~7-10\$ – while typical purification costs lies in the area of 80-165 \$/ton"

Innovation implies costs reduction and new competitors

Costs of green technologies are plummeting

Reported prices comprise a selection of recent announced long-term remuneration contract prices (e.g. PPA, auctions) for renewable power by date of announcement and to be commissioned over 2016-21. Values reported in nominal USD. UAE = United Arab Emirates. US values are implied excluding tax credits. Source: GTM, IHS, BCG analysis

AMER7-Session-3-Disruptive-Technologies-Energy-2017-IEF.pptx

225

120

Copyright © 2017 by The Boston Consulting Group, Inc. All rights reserved.

Power storage technology continues to ride the experience curve

Source: Nature Energy 2017 - The future cost of electrical energy storage based on experience rates

Innovation is driving efficiency and cost reduction

AMER7-Session-3-Disruptive-Technologies-Energy-2017-IEF.pptx

Digital Wind Farm: Big Data and Advanced Analytics as enabler for significant cost savings

Project example

Prediction Date

1. 54 continues signals/values including power and wind speed (10 min interval)

2. 366 different error/status codes

Source: BCG / DAAS / GAMMA analysis

Copyright © 2017 by The Boston Consulting Group, Inc. All rights reserved

Forecasts are consistently being surpassed

Global PV deployment forecasts

Estimated costs of batteries by 2020

Source: International Energy Agency, EPIA

New technologies mean new incumbents and new products

Example: Distributed Generation and Demand Management

"Utilities are crazy if they don't start offering customers innovative financing packages for solar and distributed generation...because others will."—Honda Executive

High diversity of companies and business models

Example: Distributed Energy

Note: map of examples, not exhaustive Source: BCG analysis

36

Copyright © 2017 by The Boston Consulting Group, Inc. All rights reserved.

High diversity of companies and business models

Example: Energy Storage

	U.S. Market Leaders ¹	Other / Emerging Players	Evolution of competition	Current Margins (2016)	Proj. Margins (2020)
Battery Manufacturing	Chem Saft	TESLE	 Massive capacity additions by incumbents Growth of custom solutions for grid storage Potential for disruptive innovation (e.g., Alevo) 	~5% 🔶	~5%
Power Conditioning Systems	- Parker St	ABB	 Entry of low-cost competitors from solar Limited ability to differentiate on technical capabilities 	~7%	~5%
Energy Storage Management Software	Greensmith Younicos	TESLA SC CS	 Several players with established solutions (Greensmith, Younicos) Perceived differentiation in market today, but capabilities being broadly developed Differentiation will require enhancing capabilities 	~25%	~20%
Integration / Tech Provider	Greensmith	Schneider	 Increasing competition from upstream players moving downstream Growing number of modular solutions on market; but value driven by customization 	~12%	~8%
EPC	Highly fragmented today	Nortenson	 Traditional EPC players building capabilities in energy storage market High potential for cost reductions with experience; "typical" EPC markups likely 	~9%	~7%
Developers	Invenergy	steeps renewable energy SolarCity	 Renewable energy developers taking larger position in energy storage market (often paired with renewables sites) 		▲ ~4% ² er margins / higher if not

1. Identification of market leaders based on cumulative systems deployed in market today

2. Increase in developer margins driven by addition of project financing capabilities Source: DOE, company websites, expert interviews, BCG analysis

acquiring system hardware

New technologies allow for new niche players

Example: wind and solar production forecasts

	Wind	Solar		
meteomedia	 Wind forecasts Combination of 12 meteorological models Includes local input High-resolution, particularly in the short term 	 Solar forecasts Combination of meteorological models and information from 800 stations and satellite 0-228 hour forecasts Resolution in 10 minutes 		
WEPROG	 Wind forecasts Intra-hourly predictions Short and long-term forecasts 0-168 hour forecasts Information for all countries 	 Solar forecasts 0-160 hour forecasts Management of uncertainty/probabilities Information for all countries 		
Fraunhofer	Wind forecastsPrediction of velocity and directionExtrapolations			
GL Garrad Hassan	 Short-term forecasts Combination of meteorological models Includes historical wind farm data 	 Short-term forecasts Combination of meteorological models Data in the client's format 		

Summary

Technological change in the energy sector is a reality that will be much more relevant in the medium term

CO₂ emissions reduction, Energy independence and Cost reduction are key levers to develop new technologies

Three main technologies to face this energy sector challenge

- <u>Renewables</u>: Wind and solar power playing an important role
- <u>Storage</u>: To reduce costs and make affordable renewables
- Energy efficiency: new business models and entrants will compete with traditional utilities

Others technologies like CCS and Hydrogen/Fuel Cells already in development phase

New technologies mean constant costs reduction and new incumbents emerging

What is the role of technology in the energy sector?

What are the main levers promoting technological change?

Key questions and discussion

How can governments accelerate the deployment of new technologies as reliably and cost effectively as possible: Which approach holds the most promise:

- · Government mandates such as on the phasing out of ICEs over the next decades, or
- Market regulation such as on carbon pricing mechanisms and performance standards?
- 2 What is the impact of new technology deployment on investment in existing technologies, how can governments help to:
 - Reduce risks to investment in existing technologies
 - Ensure adequate investment while portfolios adapt over time, to
 - Maintain energy security in energy sector transformations?
- **3** How can governments and industry accelerate the deployment of clean energy technologies in the fossil fuel sector such as CCUS, and increase carbon efficiency?

4 What new requirements do shared goals and new technologies impose on energy market data transparency: Where can the Joint Organizations Data Initiative play a role?

5 How can Ministers leverage the IEF platform to further enhance knowledge sharing on energy efficiency and facilitate trade and investment in new technologies?