Industrialization and the Demand for Mineral Commodities

Martin Stuermer
Federal Reserve Bank of Dallas
Bank of Canada

April 25, 2016

The views expressed here are those of the authors and do not represent the views of the Federal Reserve Bank of Dallas or the Federal Reserve System.
Question: How does industrialization affect the derived demand for mineral commodities in the long run?

New dataset: Al, Co, Le, Ti, Zi, 12 countries, 1840-2010.

Methodology: Heterogeneous dynamic panel model.

Results:

- Manufacturing output affects demand very differently across minerals.
- Price elasticities are relatively small.
- Adjustment to equilibrium takes 7 to 15 years.
Motivation

▶ China’s boom and recent slowdown key driver of commodity prices.

▶ “Income elasticities of demand” versus “intensity of use.”

▶ Potential demand drivers:
 ▶ Sectoral shifts.
 ▶ Intra-sectoral shifts due to development-specific consumer preferences and/or production technology.
 ▶ Time depending technological change.
 ▶ Price.
 ▶ Population growth.
A new dataset

- 12 major industrialized countries.
- 1840-2010, annual.
- Per capita consumption of aluminum, copper, lead, tin, and zinc (in metric tons).
- Per capita real value added of the manufacturing sector (IGK-$).
- Real prices (Inflation adjusted by PPIs)
Econometric model

▶ Heterogeneous dynamic panel model.

\[c_{i,t} = \sum_{j=1}^{p} \lambda_{i,j} c_{i,t-j} + \sum_{l=0}^{q} \delta_{i,l} y_{i,t-l} + \sum_{m=0}^{r} \gamma_{i,m} p_{i,t-m} + \mu_i + \epsilon_{it}. \]

▶ Error Correction Form

▶ Different extensions to account for technological change.
 ▶ Linear time trend
 ▶ Time fixed effects

▶ Pooled mean group estimator (Pesaran et al 1999).
Identification

- Reverse causality from the demand variable to price.

- Assumptions:
 - National prices follow international price in the long-run.
 - Long-run supply elastic, no single country causes long-term price changes.
Regression Results: Benchmark

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Co</th>
<th>Le</th>
<th>Ti</th>
<th>Zi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufact. (log)</td>
<td>1.551***</td>
<td>0.914***</td>
<td>0.435***</td>
<td>0.616***</td>
<td>0.734***</td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.061)</td>
<td>(0.057)</td>
<td>(0.035)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>Price (log)</td>
<td>-0.706***</td>
<td>-0.400***</td>
<td>-0.220**</td>
<td>0.169**</td>
<td>-0.064</td>
</tr>
<tr>
<td></td>
<td>(0.184)</td>
<td>(0.093)</td>
<td>(0.093)</td>
<td>(0.085)</td>
<td>(0.088)</td>
</tr>
<tr>
<td>Adj. Coeff.</td>
<td>-0.117***</td>
<td>-0.132***</td>
<td>-0.094***</td>
<td>-0.095**</td>
<td>-0.113***</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.028)</td>
<td>(0.021)</td>
<td>(0.040)</td>
<td>(0.055)</td>
</tr>
</tbody>
</table>

| No. obs. | 973 | 1,206 | 1,059 | 1,142 | 1,216 |

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Regression Results: Time Fixed Effects

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Co</th>
<th>Le</th>
<th>Ti</th>
<th>Zi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufact. (log)</td>
<td>1.581***</td>
<td>1.128***</td>
<td>0.745***</td>
<td>0.295**</td>
<td>0.834***</td>
</tr>
<tr>
<td>Price (log)</td>
<td>-0.836***</td>
<td>-0.009</td>
<td>-0.014</td>
<td>-0.384***</td>
<td>0.207**</td>
</tr>
<tr>
<td>Adj. coeff.</td>
<td>-0.142***</td>
<td>-0.180***</td>
<td>-0.148***</td>
<td>-0.096***</td>
<td>-0.085***</td>
</tr>
<tr>
<td>No. obs.</td>
<td>973</td>
<td>1,206</td>
<td>1,059</td>
<td>1,142</td>
<td>1,216</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Conclusion

- Industrialization affects demand very differently across minerals in the long run.

- China’s slowdown: strong effect on aluminum and copper demand, less so on lead, tin, and zinc.

- But intensity of aluminum use will continue to increase; copper: stable; lead, tin and zinc: down.

- Prices have a small effect on long-run demand.

- Adjustment to equilibrium: 7-12 years.
Thank for your attention and your comments!
Error Correction Form

\[
\Delta c_{i,t} = \Phi_i(c_{i,t-1} - \theta_{0,i} - \theta_{1,i}y_{i,t} - \theta_{2,i}p_{i,t}) \\
+ \sum_{j=1}^{p-1}\lambda_{i,j}^*\Delta c_{i,t-j} + \sum_{l=0}^{q-1}\delta_{i,l}^*\Delta y_{i,t-l} + \sum_{m=0}^{r-1}\gamma_{i,m}^*\Delta p_{i,t-m} + \epsilon_{it} .
\]