

IEF-IFP Symposium Role of Technology in the Petroleum Sector in Enhancing Global Energy Security

Riyadh, 15th December 2008

Energy Technology Developments

- Challenges and opportunities for a global energy security -

Dr. Antonio Pflüger

Head, Energy Technology Collaboration Division International Energy Agency

© OECD/IEA 2008

- Integral part of members' energy security
- Conducts policy analysis, compiles data
- Convenes expertise
- Publishes findings

IEA's Global Energy Technology Co-operation

More than 5 000 participants from governments, industry and R&D community

IEA Energy Technology Network

Since 1975, demand driven, 79 IAs have been created, 37 have merged or closed down 42 IAs with more than 5 000 participants

Situation Today

- Financial crisis
- Can oil and gas deliver?
- Climate change will become a major constraint for energy
- Access to modern forms of energy

What is the long term perspective?

© OECD/IEA 2008

World primary energy demand in the Reference Scenario: this is unsustainable!

World energy demand expands by 45% between now and 2030 – an average rate of increase of 1.6% per year – with coal accounting for more than a third of the overall rise

World oil production by OPEC/non-OPEC in the Reference Scenario

Production rises to 104 mb/d in 2030, with Middle East OPEC taking the lion's share of oil market growth as conventional non-OPEC production declines

World oil production by source in the Reference Scenario

Even if oil demand was to remain flat to 2030, 45 mb/d of gross capacity – roughly four times the capacity of Saudi Arabia – would be needed just to offset decline from existing oilfields

Summary & conclusions

- Current energy trends are patently unsustainable socially, environmentally, economically
- Oil will remain the leading energy source but...
 - > The era of cheap oil is over, although price volatility will remain
 - > Oilfield decline is the <u>key</u> determinant of investment needs
 - > The oil market is undergoing major and lasting structural change, with national companies in the ascendancy
- To avoid "abrupt and irreversible" climate change we need a major decarbonisation of the world's energy system
 - > Copenhagen must deliver a credible post-2012 climate regime
 - > Limiting temperature rise to 2 °C will require significant emission reductions in <u>all</u> regions & technological breakthroughs
 - > Mitigating climate change will substantially improve energy security
- The present economic worries do not excuse back-tracking or delays in taking action to address energy challenges

On request of the G8:

IEA has looked into the future role of energy technologies

IEA Energy Technology
Perspectives 2008
Scenarios & Strategies to 2050

CCS within a carbon abatement portfolio

Summarizing The Case for CCS

- Climate change requires substantive efforts to reduce CO2 emissions (28 Gt in 2006 to 14 Gt in 2050)
- To meet IPCC 450ppm target, all electricity production needs to be CO2-free
 (Saudi Arabia: over 100 GW of CO2-free electricity production in 2030 – almost 1 Gt of CO2 an option for enhanced oil recovery?)
- CCS would contribute 10 Gt reduction compared to the base line scenario
- Without CCS either total CO2 reduction cost would be 70% higher or 2050 emissions would be 70% higher (24 Gt instead of 14Gt)

CCS Demonstration Efforts

- Today: only 4 full-scale CCS demo plants operating worldwide; none with a coal-fired power plant
- The number of major CCS efforts is expanding...
 - Alberta, Canada: \$2B funding
 - Australia AUD\$3-400 million, Gorgon
 - Norway's Gassnova, UK CCS competition
 - **♦** EU ZEP
 - US FutureGen
 - OPEC countries
- ...but many of these efforts lack sufficient funding or have slowed down
- It is important to demonstrate CCS retrofits

The next 10 years are critical

Capture Projects/Prospects

Capture Projects

Source: Bluewave Resources

Storage Projects/Prospects

Storage Projects

Source: Bluewave Resources

3 IEA/CSLF Workshops on Near-Term Opportunities for CCS

Recommendations reported to the G8

IEA's G8 Recommendations in Brief

Priorities for Advancing Deployment of CO₂ Capture and Storage

- ▶ Demonstrating CO₂ capture and storage and bridging the financial gap
- Taking concerted international action
- Creating a value for CO₂ for commercialisation of CCS
- Establishing legal and regulatory frameworks
- Communicating with the public
- Infrastructure
- Considering requirements for retrofit with CO₂ capture

IEA and G8

www.iea.org/G8

energy; and enhanced international co-operation.

Responding at their 2008 Summit, the G8 leaders' Hokkaido communiqué:

Bookshop 😾

Λ Δ Δ

Efficiency - Key Insights from IEA

Fossil Fuel-Fired Power Generation -

Case Studies of Recently Constructed

Indicator Analysis

First Resources to Reserves Publication Released September 2005

- First IEA study of this kind now downloadable for free at www.iea.org
- Review of upcoming oil and gas technologies (relating to the upstream sector)
- 2005 conclusions
 - Earth is not running out of oil principle, but at what cost?
 - \$30 \$40 per barrel long term expectations can make some
 4 trillion barrels of oil reserves for the future
 - Technology/higher prices can mobilize even more resources
 - Investment and trained personnel is crucial to maintain stable markets
- <u>Audience:</u> Experts and informed laymen
- Goal: Provide common basis for discussion
- Needs update!

1st Edition ...

- Used by
 - IEA
 - National authorities
 - Organisations (BGR, USGS, SPE ...)
 - Industry (oil and gas, services)
 - Stern Review
- Related new IEA work
 - Mid Term Oil Market Report
 - World Energy Outlook 2008 analysis of 800 oilfields

Key Graph 2005:

Most recoverable resources should become economical at oil prices significantly below current level

Source: IEA 2005, Resources to Reserves - Oil & Gas Technologies for the Energy Markets of the Future

... specific cost have come down

3D seismics, Horizontal drilling, Offshore technology ...

... but R&D investments in oil and gas too

INTERNATIONAL ENERGY AGENCY

AGENCE INTERNATIONALE DE L'ENERGIE

... public R&D spendings too but not so fast as in total

Cost Inflation in Upstream Investment (since 2000)

Source: IHS-CERA, May 2008

Cost Inflation in Downstream Investment (since 2000)

Source: IHS-CERA, May 2008

Update needed!

Source: IEA 2005, Resources to Reserves – Oil & Gas Technologies for the Energy Markets of the Future

Oil and Gas will be increasingly unconventional and from harsh environments

Source: WEO 2008

Supply

 The world is not running out of energy resources,

But supply may struggle to keep pace.

Key challenges needs and opportunities

Reservoir Characterization

- Large scale heterogeneities: Faults, fractures, stylolites, tar mats, etc.
- Wettability distribution (Oil-wet zones, water-wet zones, mixed)
- Mineralogy determination: dolomitization and diagenesis
- Saturation determination in carbonates and its impact on reserves

- Tracking fluid movement in the reservoir and displacement efficiency
- Water management in carbonates

Oil Recovery

- Modeling and simulation of fluid exchanges between oil-wet matrix blocks and surrounding fractures – Modeling of drainage networks
- Technologies to optimize sweep efficiency in heterogeneous reservoirs (Well placement, intelligent completions, smart fluids, etc.) – EOR

Evolution of Deepwater Technology

Reproduced in Resources to Reserves courtesy of Shell

Stepping into deep water - Norway

Stepping into deep water

Offshore Records and Facilities - Brazil

Petrobras Records

Completion & Production at 1,886m **OTC** OTC 709m 1992 2001 D.D. Fev/2002: Exploration Well at 2,853m

Offshore Facilities

Equipment	Installed Dec/2006	Planned (2007)
Subsea Trees	608	40
Subsea Manifolds	60	-
Subsea Flexible Flowlines (km)	3 200	400
Umbilicals (km)	1 900	200
Rigid Pipelines (km)	1 857	275
Floating Production Units	28	4
Monobuoys	3	-

Including Espirito Santo & Santos Basins, Piranema field NE Brazil

Resources to Reserves - 2nd Edition

- Updating (oil update in IEA WEO 2008)
 - Quantities of resources
 - Exploration costs/economic prices
- New foci
 - New case stories
 - Additional information on gas, coal, uranium
 - Non-conventional oil & gas
 - Competing fuels (CTL, GTL and BTL)
 - ◆ CO₂ chains, sources, possible sinks, incl. EOR
- Project schedule
 - 3 workshops, started September 2007
 - Review workshop May 2009, Florence
 - Launch in summer 2009

for the Energy Markets

Conclusions

- There are opportunities for the IEA to intensify technology collaboration beyond today's level
 - Create better understanding of resources and reserves (studies and publications)
 - Collaboration in technology/policy relevant areas in IEA Implementing Agreements with typically 5 to 30 partners (EOR IA has 9 participants)
 - Address climate change: CO2 abatement strategies and technologies (CCS)